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A common approach in computational science is to use a set of highly precise but expensive calculations to
parameterize a model that allows less precise but more rapid calculations on larger-scale systems. Least-
squares fitting on a model that underfits the data is generally used for this purpose. For arbitrarily precise data
free from statistic noise, e.g., ab initio calculations, we argue that it is more appropriate to begin with an
ensemble of models that overfit the data. Within a Bayesian framework, a most likely model can be defined that
incorporates physical knowledge, provides error estimates for systems not included in the fit, and reproduces
the original data exactly. We apply this approach to obtain a cluster expansion model for the CaZr1−xTixO3

solid solution.
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A common approach in computational science is the use
of a small number of highly precise but expensive calcula-
tions to generate data to fit the parameters of a less accurate
but more computationally tractable “effective model” en-
abling larger-scale simulations.1,2 A typical example is the fit
of a simplified energy model to accurate quantum-
mechanical calculations.3–11 Although least-squares minimi-
zation is traditionally used for this purpose, it is not com-
monly recognized that this approach implicitly and
incorrectly assumes that the uncertainty lies in the data rather
than in the effective model.

Here we show that the fact that the model is less accurate
than the data can be properly taken into account within a
Bayesian12 framework where the “prior” probability distribu-
tion of the model parameters characterizes the range of
physically plausible models. The model parameters are ob-
tained by maximizing the “posterior” distribution provided
by Bayes rule, given the accurate data and the prior. This
approach enables a perfect fit to the input noiseless data
while avoiding the usual artifacts of overfitting10 and enables
the seamless inclusion of physical knowledge into the fitting
procedure via the prior. Although Bayesian methods have a
long history in the statistical sciences, �including recent in-
terest in Bayesian learning techniques13,14�, the unexpectedly
well-behaved limit of completely noiseless data we report
here has, to our knowledge, not been noted, perhaps because
existing methods have historically been motivated by the
need to fit noisy experimental data rather than noiseless cal-
culated data. However, the latter setting clearly deserves
more attention.

While our general theoretical approach should have broad
applicability in numerous fields of computational sciences, in
this paper, we focus on the specific but broadly applicable
example of the construction of an efficient energy model for
a crystalline alloy.3 This task has immediate applications to
thermodynamic modeling of alloys and the determination of
their phase diagrams, a crucial component of alloy design
and optimization.

In this context, the accurate total-energy data are provided
by ab initio electronic-structure methods based upon density-
functional theory,15,16 whose accuracy has been thoroughly
validated in a wide range of solid-state systems.17 �Although
such ab initio calculations may not provide the exact
quantum-mechanical result, they are precise in that they are
virtually free of random errors, as numerical noise is well
controlled in modern ab initio software.� The effective model
is a so-called cluster expansion �CE�,3–11,18 that takes the
form of a polynomial in occupation variables �described in
detail below� indicating which atom lies on each lattice site.
The unknown parameters of the CE to be determined are the
coefficients of this polynomial. The CE has been previously
shown18 to be able, in principle, to exactly represent any
possible configurational dependence of the energy, provided
that all terms the expansion are included, which unfortu-
nately amounts to an infinite number of terms.

Typically, such CE models are created through a least-
squares fit to a database of ab initio structural energies ob-
tained using a CE truncated to a finite number of terms so
that the number of input configurations is larger than the
number of unknown parameters. This leads to a “truncation
problem,” where the terms to be retained in the model must
be determined. Approaches for optimizing the truncation in
this context have included the cross-validation �CV� score
minimization,3,10,19 sometimes combined with regularization
techniques.20,21 Conventional Bayesian approaches have also
been suggested,22,23 which do not restrict the number of un-
known parameters to be bounded by the size of the database.

These approaches treat systematic errors �due to model
truncation� and statistical errors �due to numerical noise in
the data� on an equal footing without exploiting the knowl-
edge that statistical errors are, in fact, negligible in this con-
text. In the large sample limit, truncation selection methods
would eventually “discover” that the statistical noise is zero
but considerable improvements are possible if this known
fact is explicitly taken into account from the start.
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In this paper, we avoid truncation problems by including
many more terms in the effective model than the number of
ab initio calculations performed. Although the fitting prob-
lem is underdetermined, it can nonetheless be solved by us-
ing Bayesian inference with a physically based prior prob-
ability distribution for the model coefficients.

A configuration i in a binary alloy is defined by the occu-
pation of each site k of a lattice by one of two species,
indicated by a spinlike variable sik= �1. Each configuration
i has an associated ab initio energy Ei. These energies can be
written in terms of effective cluster interactions,6,18

�
�

�i�J� = Ei,

where �i�= ��k��sik� is the translationally and rotationally
averaged multibody spin correlation for each symmetry-
independent cluster � while J� is the associated effective
interaction parameter to be determined.

Bayes’ theorem12 states that given a prior probability dis-
tribution P�0��J� of the unknown parameter vector J and one
energy observation Ei, the posterior probability of J given Ei
is

P�J�Ei� � P�Ei�J�P�0��J� .

Since Ei is precisely known, the conditional probability re-
duces to a delta function,

P�Ei�J� = ���iJ − Ei� , �1�

where �i denotes the row vector of all values of �i� for a
fixed i. As a result, P�J �Ei� is trivially proportional to
���iJ−Ei�P�0��J�. By induction, the posterior probability of J
based on all the energy information Ei, i=1, . . . ,n is

P�n��J� � �
i=1

n

���iJ − Ei�P�0��J� .

The difference between prior and posterior probabilities is
represented geometrically in Fig. 1. Each new data point
selects a cross section of the prior distribution corresponding

to sets of parameter values that agree perfectly with this data
point. Within the intersection of these cross sections, each
point has a different posterior probability that is dictated by
the prior. The most likely model parameters J�n� can be de-
termined by maximizing P�n��J� �see key methodological de-
tails at end�. This approach selects a unique solution from an
otherwise underdetermined system of equations, based on
the “physical” information provided by the prior.

The width of the posterior provides a measure of the un-
certainty remaining in the fitted parameter after the data has
been incorporated, which can be used, for instance, to access
the accuracy of predicted energies for any structure not in-
cluded in the fit. For a Gaussian prior, the posterior is Gauss-
ian as well and the most likely parameter values are also the
expected parameter values, which implies, given the linearity
of the cluster expansion, that the predicted energies from the
CE model will also be expected values.

The above procedure was applied to model total energies
in the CaZr1−xTixO3 �CZT� system, a perovskite solid solu-
tion with tilted oxygen octahedra.24 The structures studied
were constrained to a common 80-atom supercell shown in
Fig. 2, which has 16 perovskite “B” sites that contain either
Zr or Ti. Local density-functional theory calculations were
performed on specific CZT configurations using the VASP

�Ref. 25� code and ultrasoft pseudopotentials,26 with semi-
core p electrons treated as valence electrons for Ca, Zr, and
Ti. A 375 eV plane-wave energy cutoff and a 1500 eV cutoff
for augmentation charges were used. The k-point mesh was
equivalent to an 8�8�8 Monkhorst-Pack grid for a primi-
tive perovskite cell. The number of symmetrically distinct
possible arrangements of Zr and Ti and the number of terms
in the full cluster expansion are both 2386; all terms are
retained in the fitting.

Based on simple physical considerations, the following
Gaussian prior was selected:

P�0��J� = �
�

��2�w��−1exp	�− J��2/�2w�
2�


with w�=Abn���i,j����rij /a�−2 �a, the primitive perovskite
lattice parameter, 
4 Å�. Clusters with more sites n� are
expected to have smaller coefficients �i.e., b�1�, and clus-
ters with pairs �i , j� of atoms at larger separations rij are
expected to have smaller coefficients. The exponent of −2 is
motivated by the observation that Zr and Ti have the same
charge so interactions cannot be mediated by differences in
monopole coupling, leaving only dipolar leading terms. The
choice of a Gaussian prior is not only computationally con-
venient but also reflects the fact that the effective interaction

J(1)

FIG. 1. �Color online� The ellipsoids schematically represent
equiprobability surfaces of a many-dimensional prior probability
distribution for P0�J�. The plane represents the constraints on J
given by the results of an ab initio total-energy calculation. The
�N−1�-dimensional ellipsoid sliced by the plane gives an equiprob-
ability surface for the posterior distribution of P�1��J�; the point
marked J�1�, represents the most likely solution for J.

a b

FIG. 2. �Color online� �a� Representative CZT structure; �b�
common 80-atom supercell for CZT energy calculations highlighted
in bold.

BRIEF REPORTS PHYSICAL REVIEW B 81, 012104 �2010�

012104-2



between a given set of atoms is the result of large number of
small �a priori random� contributions. A central limit argu-
ment then motivates the fact that the effective interactions
should, a priori, have a Gaussian distribution.

Although, in a traditional Bayesian setting, the parameters
A and b are user specified, we devised a technique to opti-
mize them �see key methodological details�, thus making the
method free of adjustable parameters. In essence, we view
the posterior as a statistical quantity whose sampling proper-
ties �as benchmarked by cross validation10� can be optimized
by adjusting the prior.

Our Bayesian approach is embedded in an iterative
scheme where, at each step, a most likely solution J is found
and error estimates for the other configurations not included
in the fit are calculated using the posterior. The configuration
with the highest estimated error is then added to the fit, after
its ab initio total energy is calculated �see key methodologi-
cal details�. This procedure is repeated until a sufficient pre-
dictive accuracy has been reached, as illustrated in Fig. 3,
which compares the estimated errors with the actual errors
on a fixed subset of 37 selected structures not used in the
fitting procedure. One sees: �1� the fit rapidly improves at
first, as the dominant terms are determined, followed by a
slower improvement; �2� the estimated errors fluctuate but
generally match the true errors to within a factor of 2; and �3�
the predictive errors are two to three times smaller than those
for the cross-validation approach.

The proposed method offer one very important advantage
for thermodynamic applications, such as phase-diagram
calculations,10 where it is crucial that the lowest-lying ener-
gies have the proper order and energy differences. The con-
ventional least-squares fitting procedure does not guarantee
this, even if these states were included in the fitting proce-
dure. By reproducing the energies of all states included in the
fit exactly, our procedure entirely avoids this problem.

For calculation efficiency purposes, one may truncate the
terms to be retained in the solution to those whose J�

exceeds some small threshold value, with little effect on the
results �as suggested in Ref. 20 in a related context�.

While the need to specify a prior in Bayesian methods is
often criticized, it should be realized that a conventional
least-squares fit is not free of a priori assumptions either. In
the cluster expansion example, a conventional fit with a user-
specified truncation distance amounts to a prior which is un-
informative �flat� for the included interactions coefficients
but entirely concentrated at zero for the excluded coeffi-
cients. This incorporates physical knowledge into the prob-
lem but with a complete certainty that far exceeds what a
researcher could plausibly know. A smoother prior which
gradually concentrates the probability toward zero coeffi-
cient values as the range of interaction increases appears a
more appropriate description of a priori information.

If the data does contain some error �for instance, signifi-
cant numerical noise�, then the delta function in Eq. �1� must
be replaced by a smooth density and a conventional Bayesian
methodology would result �as in Refs. 22 and 23�. If that
density is Gaussian, then one recovers a so-called ridge re-
gression or Tikhonov regularization,27 a penalized least-
squares estimator, which has been previously used in the
context of CE construction.20,21

While our procedure generates a model that is uniquely
determined from the input data, the physical knowledge in-
corporated is minimal, and priors that incorporate more
physical knowledge would likely yield superior models with
even better predictive ability. For example, one could choose
a prior where the values of terms related by pseudosymmetry
relationships are correlated23 or priors where the multibody
terms include angular dependence. Formally quantifying this
method’s discriminating power as a function of the prior rep-
resents a fruitful avenue of future investigation.

The construction of multibody interatomic force fields
based on quantum-mechanical data28,29 represents an impor-
tant possible application of the methodology proposed here.
It differs from the alloy problem in that the energy is a func-
tion of a continuous set of distance variables, rather than a
discrete set of spacings on a lattice. While force fields are
often selected to be nonlinear in the unknown parameters,
energy models that are linear in the parameters �such as
splines� are probably preferable in our context, as they make
the interaction optimization problem numerically stable and
efficient. The lack of physical basis for spline functions is
alleviated by the possibility of including many more param-
eters than data points and the ability to favor physically plau-
sible interaction shapes via the prior. Such an approach could
lead to successful force-field models, with defined uncertain-
ties and with broad applications in computational physics
�see Ref. 30 for recent work on the Bayesian approach to
modeling of force fields�.

Key methodological details. With a zero-mean Gaussian
prior for the vector J containing all interactions J�, the pos-
terior maximum is given by J�n�=W�T��W�T�−1E, where W
denotes the variance-covariance matrix of the prior while �
denotes the matrix with elements �i� and E denotes the vec-
tor of all n known structural energies Ei. An equivalent ap-
proach is to perform the changes in variables ��=�W1/2 and
J��n�=W−1/2J�n� �where we use the symmetric square-root ma-
trix� and find the minimum Euclidean norm solution J��n� to
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FIG. 3. �Circles� Convergence of the mean and maximum pre-
dicted errors on energies of configurations not included in the fit, as
a function of the number of configurations included in fit. �Squares�
Convergence of actual errors for a selected subset of 37 structures
not included in the fit. �Triangles� Predictive ability of CV method.
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��J��n�=E using, for instance, standard singular-value de-
composition techniques.

The expected energy of any additional configuration
i=n+1 �with correlations equal to the row vector ��n+1�� is
given by ��n+1�J

�n�. The root-mean-square error in this energy
is simply given by �Pr��

�n��n+1� �, where Pr��
�n� is a projector in

the prime space that simultaneously projects �n+1� orthogonal
to all �i	n� .

The parameters of the prior are optimized as follows. If
all terms w� in a Gaussian prior are scaled by the same value
x, then �1� J�n� remains unchanged and �2� all predicted errors
are scaled by x. A self-consistent value for x can therefore be
obtained by scaling the mean-square estimated errors to
equal the actual errors. In an analogous way to the leave-one-
out cross-validation method,10 one can take the set of struc-

tures used to obtain J�n�, omit each single structure i one at a
time, and calculate the estimated and actual errors for Ei

based on fitting the model to all the other structures. The
value b is optimized by minimizing the mean-square cross-
validation error. In our example, as more structures are in-
cluded, the value of b converges, which indicates that the
procedure is self-consistent.
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